Демонстрационный вариант

заданий государственного экзамена

на степень бакалавра направления подготовки

Математика

2015/2016 учебный год

Часть А

NoNo	Текст задания	Варианты ответов (около верного от-		
3 125 12	текет задания	вета проставьте знак «V»)		
1	Вычислить $\int_{0}^{\pi/4} x \cdot e^{x} dx$	1. $e^{\frac{\pi}{4}} \left(\frac{\pi}{4} - 1\right) + 1$ 2. $e^{\frac{\pi}{4}} \left(\frac{\pi}{4} + 1\right) - 1$ 3. $e^{\frac{\pi}{4}} \left(\frac{\pi}{4} - 1\right) - 1$ 4. $e^{\frac{\pi}{4}} \left(\frac{\pi}{4} + 1\right) + 1$		
2	Линейный оператор A задан в исходном базисе матрицей $\begin{pmatrix} 1 & 1 & 2 \\ 1 & -2 & -1 \\ 1 & 1 & 2 \end{pmatrix}.$ При каком значении параметра λ вектор $(1,4,\lambda)$, , заданный координатами в исходном базисе, принадлежит образу оператора A?	1. $\lambda = 2$ 2. $\lambda = -1$ 3. $\lambda = 1$ 4. $\lambda = 0$		
3	Для уравнения $y''-10y'+25y=2e^{5x}$ указать решение с неопределенными коэффициентами.	1) $y = Ax e^{5x}$ 2) $y = (Ax + B)e^{5x}$ 3) $y = Ax^{2} e^{5x}$ 4) $y = (Ax^{2} + Bx + C)e^{5x}$		
4	Какое из указанных множеств функций следует добавить к	1. $\{x \lor y; x \leftrightarrow y($ эквиваленция $)\}$		

5	функции $x \to y$, чтобы получить полную систему функций? Дано вероятностное пространство (Ω, A, P) , где Ω — непустое множество, $A - \sigma$ -алгебра подмножеств множества Ω, P — вероятностная мера на Ω . Событием называется: варианты ответа (см. клетку с вариантами ответов)	 2. {x ∨ y;1} 3. {xy;1;} 4. {x ∨ y;x ⊕ y} 1. точка вероятностного пространства. 2. подмножество вероятностного пространства. 3. подмножество вероятностного пространства, принадлежащее σ-алгебре A. 4. подмножество S вероятностного пространства положительной меры P(S) > 0.
6	Естественная норма в l_1 задается равенством (здесь $x = (x_n)_{n \in \mathbb{N}} \in l_1$):	$ x = \sup_{n \in \mathbb{N}} x_n $ 1. $n \in \mathbb{N}$. $ x = \left(\sum_{n=1}^{\infty} x_j ^2\right)^{1/2}$ 2. $ x = \sum_{n=1}^{\infty} x_n $ 3. $ x = x_1 + \sum_{n=2}^{\infty} x_n - x_{n-1} $ 4. $ x = x_1 + \sum_{n=2}^{\infty} x_n - x_{n-1} $
7	Формула для вычисления кривизны регулярной кривой в общей регулярной параметризации имеет вид:	1. $k(s) = \vec{r} $. 2. $k(t) = \frac{ \vec{r}' \times \vec{r}'' }{ \vec{r}' ^3}$. 3. $k(t) = \frac{ \vec{r}' \times \vec{r}'' }{ \vec{r}' ^{3/2}}$. 4. $k(s) = \vec{r} ^{3/2}$.
8	Топологическое пространство называется компактным, если:	 из любой последовательности в этом пространстве можно выделить сходящуюся подпоследовательность. из любого открытого покрытия этого пространства можно выделить счётное подпокрытие. оно обладает счётной базой. из любого открытого покрытия

		этого пространства можно вы-		
		делить конечное подпокрытие		
9	Установить взаимное располо-	1. параллельны		
	жение двух прямых: $\frac{x-1}{2} = \frac{y+1}{1} = \frac{z-2}{2} \text{ и } \frac{x-3}{4} = \frac{y}{2} = \frac{z-4}{4}$	 совпадают пересекаются 		
		4. скрещиваются		
10	Определить тип данного уравнения $\frac{\partial^2 u}{\partial x^2} - 2 \frac{\partial^2 u}{\partial x \partial y} + \frac{\partial^2 u}{\partial y^2} + 5 \frac{\partial u}{\partial x} = 0$	1) эллиптический		
		2) гиперболический		
		3) параболический		
		4) смешанный		
		4) Смешанный		
11	Какая из предложенных формул относится к итерационному методу Ньютона для уточнения корня нелинейного уравнения $x \cdot \sin x = 1$	1. $x_{k+1} = \frac{x_k^2 \cos x_k + 1}{\sin x_k - x_k \cos x_k}$ 2. $x_{k+1} = \frac{x_k \cos x_k + 1}{\sin x_k + x_k \cos x_k}$ 3. $x_{k+1} = \frac{x_k^2 \cos x_k + 1}{\sin x_k + x_k \cos x_k}$ 4. $x_{k+1} = \frac{x_k^2 \sin x_k + 1}{\cos x_k + x_k \sin x_k}$		
12	Множество всех значений аргумента отличного от нуля комплексного числа а	 1.состоит только из одного значения, равного arg(a) 2.бесконечно, но любые два значения различаются на целое кратное 2π 3.состоит из конечного числа значений, которые высчитываются по формуле Муавра 		

Часть В

13. В круг радиуса R вписан равносторонний треугольник. Какова вероятность, что четыре наугад поставленные в этом круге точки окажутся внутри треугольника?

- 14. Найти сумму всех элементов матрицы, обратной к матрице $\begin{pmatrix} 2 & 1 \\ 5 & 3 \end{pmatrix}$
- 15. Найти предел:

$$\lim_{x\to 0}\frac{\cos 5x - \cos 3x}{x^2}$$

16. Решить задачу Коши для дифференциального уравнения

$$y' + y \operatorname{tg} x = \frac{1}{\cos x};$$
 $y(0) = 2$

17. По данной таблице значений функции постройте интерполяционный многочлен и определите с его помощью приближенное значение функции в заданной точке (соответствующей клетке таблицы, заполненной «?»).

X	-2	-1	0	1	0.1
f(x)	2	-3	-4	5	?

18. Найти дифференциал функции $f(x,y) = 2^{-\frac{y}{x}}$ и вычислить его значение в точке (1;1).

- 19. Используя тройной интеграл, найти объем тела, ограниченного следующими поверхностями: $z=6-x^2-y^2$, $z=(x^2+y^2)^{1/2}$.
- 20. Найти вычет функции комплексного переменного $f(z)=\cos\{1/(z-2)\}$ в точке z=2.

Часть С.

- 21. Доказать, что существуют такие предикаты P(x) и Q(x), что $\forall x (P(x) \lor Q(x)) \neq \forall x P(x) \lor \forall x Q(x)$.
- 22. Проверить, образуют ли векторы a_1 , a_2 , a_3 фундаментальную систему решений для однородной системы линейных уравнений

$$\begin{cases} 2x_1 - x_2 + 3x_3 + 4x_4 + x_5 = 0 \\ x_1 + 2x_2 + x_3 - x_4 + x_5 = 0 \\ 4x_1 + 3x_2 + 5x_3 + 2x_4 + 3x_5 = 0 \end{cases}$$

$$a_1 = (3,1,0,0,-5), a_2 = (1,1,1,0,-4), a_3 = (-3,0,-1,1,0)$$

23. Определить направление выпуклости и точки перегиба графика функции:

$$y = \frac{x - 1}{1 + (x - 1)^2}$$

- 24. Докажите, что радиус сферы, проведенный из центра сферы в точку на её поверхности, перпендикулярен плоскости, касающейся сферы в этой точке.
- 25. Вычислить $\int_{L} \frac{(z+1)^2}{z^2 \cdot (z-2)} dz$, $L: |z| = \frac{3}{2}$